Blog đang nâng cấp, báo lỗi tại đây!

Các quy tắc tính đạo hàm

Bài viết trình bày các quy tắc tính đạo hàm, giúp việc tính đạo hàm của một hàm số phức tạp trở nên dễ dàng hơn bằng cách quy về tính đạo hàm của các hàm số đơn giản.

I. Kiến thức cần nắm:
1. Quy tắc tính đạo hàm:
a. Đạo hàm của tổng, hiệu, tích, thương các hàm số:
• \(({u_1} \pm {u_2} \pm … \pm {u_n})’\) \( = {u_1}’ \pm {u_2}’ \pm … \pm {u_n}’.\)
• \((k.u(x))’ = k.u'(x).\)
• \((uv)’ = u’v + uv’.\)
• \((uvw)’ = u’vw + uv’w + uvw’.\)
• \(({u^n}(x))’ = n{u^{n – 1}}(x).u'(x).\)
• \(\left( {\frac{c}{{u(x)}}} \right)’ = – \frac{{c.u'(x)}}{{{u^2}(x)}}.\)
• \({\left( {\frac{{u(x)}}{{v(x)}}} \right)}’\) \( = \frac{{u'(x)v(x) – v'(x)u(x)}}{{{v^2}(x)}}.\)
b. Đạo hàm của hàm số hợp: Cho hàm số \(y = f(u(x)) = f(u)\) với \(u = u(x).\) Khi đó: \(y{‘_x} = y{‘_u}.u{‘_x}.\)
2. Bảng công thức đạo hàm các hàm sơ cấp cơ bản:

Đạo hàm Hàm hợp
\[(c)’ = 0\]
\[(x)’ = 1\]
\[({x^\alpha })’ = \alpha {x^{\alpha – 1}}\] \[\left( {{u^\alpha }} \right)’ = \alpha {u^{\alpha – 1}}.u’\]
\[\left( {\sqrt x } \right)’ = \frac{1}{{2\sqrt x }}\] \[\left( {\sqrt u } \right)’ = \frac{{u’}}{{2\sqrt u }}\]
\[\left( {\sqrt[n]{x}} \right)’ = \frac{1}{{n\sqrt[n]{{{x^{n – 1}}}}}}\] \[\left( {\sqrt[n]{u}} \right)’ = \frac{{u’}}{{n\sqrt[n]{{{u^{n – 1}}}}}}\]
\[(\sin x)’ = \cos x\] \[(\sin u)’ = u’.\cos u\]
\[(\cos x)’ = – \sin x\] \[(\cos u)’ = – u’\sin u\]
\[(\tan x)’ = \frac{1}{{{{\cos }^2}x}}\] \[\left( {\tan u} \right)’ = \frac{{u’}}{{{{\cos }^2}u}}\]
\[(\cot x)’ = – \frac{1}{{{{\sin }^2}x}}\] \[\left( {\cot u} \right)’ = – \frac{{u’}}{{{{\sin }^2}u}}\]

II. Ví dụ minh họa:
Ví dụ 1. Tính đạo hàm các hàm số sau:
a. \(y = {x^3} – 3{x^2} + 2x + 1.\)
b. \(y = – {x^3} + 3x + 1.\)
c. \(y = \frac{{{x^4}}}{4} – {x^2} + 1.\)
d. \(y = – 2{x^4} + \frac{3}{2}{x^2} + 1.\)
e. \(y = \frac{{2x + 1}}{{x – 3}}.\)
f. \(y = \frac{{{x^2} – 2x + 2}}{{x + 1}}.\)

a. \(y’ = {\left( {{x^3} – 3{x^2} + 2x + 1} \right)’}\) \( = 3{x^2} – 6x + 2.\)
b. \(y’ = {\left( { – {x^3} + 3x + 1} \right)’}\) \( = – 3{x^2} + 3.\)
c. \(y’ = {\left( {\frac{{{x^4}}}{4} – {x^2} + 1} \right)’}\) \( = {x^3} – 2x.\)
d. \(y’ = {\left( { – 2{x^4} + \frac{3}{2}{x^2} + 1} \right)’}\) \( = – 8{x^3} + 3x.\)
e. \(y’ = \) \(\frac{{(2x + 1)'(x – 3) – (x – 3)'(2x + 1)}}{{{{(x – 3)}^2}}}\) \( = \frac{{ – 7}}{{{{(x – 3)}^2}}}.\)
f. \(y’ = \) \(\frac{{({x^2} – 2x + 2)'(x + 1) – ({x^2} – 2x + 2)(x + 1)’}}{{{{(x + 1)}^2}}}\) \( = \frac{{(2x – 2)(x + 1) – ({x^2} – 2x + 2)}}{{{{(x + 1)}^2}}}\) \( = \frac{{{x^2} + 2x – 4}}{{{{\left( {x + 1} \right)}^2}}}.\)

Ví dụ 2. Tính đạo hàm các hàm số sau:
a. \(y = {\left( {{x^7} + x} \right)^2}.\)
b. \(y = \left( {{x^2} + 1} \right)\left( {5 – 3{x^2}} \right).\)
c. \(y = {x^2}\left( {2x + 1} \right)\left( {5x – 3} \right).\)
d. \(y = {\left( {4x + \frac{5}{{{x^2}}}} \right)^3}.\)
e. \(y = {(x + 2)^3}{(x + 3)^2}.\)

a. \(y’ = 2({x^7} + x)({x^7} + x)’\) \( = 2({x^7} + x)(7{x^6} + 1).\)
b. Ta có: \(y = \left( {{x^2} + 1} \right)\left( {5 – 3{x^2}} \right)\) \( = – 3{x^4} + 2{x^2} + 5\) \( \Rightarrow y’ = – 12{x^3} + 4x.\)
c. Ta có: \(y = {x^2}\left( {2x + 1} \right)\left( {5x – 3} \right)\) \( = 10{x^4} – {x^3} – 3{x^2}\) \( \Rightarrow y’ = 40{x^3} – 3{x^2} – 6x.\)
d. \(y’ = 3{\left( {4x + \frac{5}{{{x^2}}}} \right)^2}\left( {4x + \frac{5}{{{x^2}}}} \right)’\) \( = 3{\left( {4x + \frac{5}{{{x^2}}}} \right)^2}\left( {4 – \frac{{10}}{{{x^3}}}} \right).\)
e. \(y’ = 3{({x^2} + 5x + 6)^2} + 2(x + 3){(x + 2)^3}.\)

Ví dụ 3. Giải bất phương trình \(f'(x) \ge 0\), biết:
a. \(f(x) = x\sqrt {4 – {x^2}} .\)
b. \(f(x) = x – 2\sqrt {{x^2} + 12} .\)
c. \(f(x) = \sqrt[4]{{{x^2} + 1}} – \sqrt x .\)

a. Tập xác định: \(D = \left[ { – 2;2} \right].\)
Ta có: \(f'(x) = \sqrt {4 – {x^2}} – \frac{{{x^2}}}{{\sqrt {4 – {x^2}} }}\) \( = \frac{{4 – 2{x^2}}}{{\sqrt {4 – {x^2}} }}.\)
Do đó: \(f'(x) \ge 0\) \( \Leftrightarrow 4 – 2{x^2} \ge 0\) \( \Leftrightarrow – \sqrt 2 \le x \le \sqrt 2 .\)
b. Tập xác định: \(D = R.\)
Ta có: \(f'(x) = 1 – \frac{{2x}}{{\sqrt {{x^2} + 12} }}\) \( = \frac{{\sqrt {{x^2} + 12} – 2x}}{{\sqrt {{x^2} + 12} }}.\)
Suy ra: \(f'(x) \ge 0\) \( \Leftrightarrow \sqrt {{x^2} + 12} \ge 2x\) \((1).\)
• Với \(x < 0\) thì \((1)\) luôn đúng.
• Với \(x \ge 0\) thì \((1) \Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
{x^2} + 12 \ge 4{x^2}
\end{array} \right.\) \( \Leftrightarrow 0 \le x \le 2.\)
Vậy bất phương trình \(f'(x) \ge 0\) có nghiệm khi và chỉ khi \(x \le 2.\)
c. Tập xác định: \(D = \left[ {0; + \infty } \right).\)
Ta có: \(f'(x) = \frac{x}{{2\sqrt[4]{{{{({x^2} + 1)}^3}}}}} – \frac{1}{{2\sqrt x }}.\)
\(f'(x) \ge 0\) \( \Leftrightarrow x\sqrt x \ge \sqrt[4]{{{{({x^2} + 1)}^3}}}\) \( \Leftrightarrow {x^6} \ge {({x^2} + 1)^3}\) \( \Leftrightarrow {x^2} \ge {x^2} + 1\), bất phương trình này vô nghiệm.
[ads]
Ví dụ 4. Tính đạo hàm các hàm số sau:
a. \(y = \sqrt {2{x^2} + 3x + 1} .\)
b. \(y = \sqrt[5]{{\sqrt {2{x^2} + 1} + 3x + 2}}.\)
c. \(y = \sqrt {2{{\sin }^2}(2x – 1) + \cos \sqrt x } .\)
d. \(y = \tan ({\sin ^2}3x) + \sqrt {{{\cot }^2}(1 – 2{x^3}) + 3} .\)
e. \(y = \sqrt[3]{{\sin (\tan x) + \cos (\cot x)}}.\)

a. \(y’ = \frac{{(2{x^2} + 3x + 1)’}}{{2\sqrt {2{x^2} + 3x + 1} }}\) \( = \frac{{4x + 3}}{{2\sqrt {2{x^2} + 3x + 1} }}.\)
b. \(y’ = \frac{1}{{5.\sqrt[5]{{{{(\sqrt {2{x^2} + 1} + 3x + 2)}^4}}}}}\)\((\sqrt {2{x^2} + 1} + 3x + 2)’\) \( = \frac{1}{{5.\sqrt[5]{{{{(\sqrt {2{x^2} + 1} + 3x + 2)}^4}}}}}\)\((\frac{{2x}}{{\sqrt {2{x^2} + 1} }} + 3).\)
c. \(y’ = \frac{{(2{{\sin }^2}(2x – 1) + \cos \sqrt x )’}}{{2\sqrt {2{{\sin }^2}(2x – 1) + \cos \sqrt x } }}\) \( = \frac{{2\sin (4x – 2) – \frac{1}{{2\sqrt x }}\sin \sqrt x }}{{2\sqrt {2{{\sin }^2}(2x – 1) + \cos \sqrt x } }}\) \( = \frac{{4\sqrt x \sin (4x – 2) – \sin \sqrt x }}{{4\sqrt {2x{{\sin }^2}(2x – 1) + x\cos \sqrt x } }}.\)
d. \(y’ = [1 + {\tan ^2}({\sin ^2}3x)]({\sin ^2}3x)’\) \( + \frac{{[{{\cot }^2}(1 – 2{x^3}) + 3]’}}{{2\sqrt {{{\cot }^2}(1 – 2{x^3}) + 3} }}\) \( = 3 [1 + {\tan ^2}({\sin ^2}3x)]\sin 6x\) \( + \frac{{6{x^2}{\rm{[}}1 + {{\cot }^2}(1 – 2{x^3}){\rm{]}}\cot (1 – 2{x^3})}}{{\sqrt {{{\cot }^2}(1 – 2{x^3}) + 3} }}.\)
e. \(y’ = \frac{{[\sin (\tan x) + \cos (\cot x)]’}}{{3\sqrt {{{[\sin (\tan x) + \cos (\cot x)]}^2}} }}\) \( = \frac{{(1 + {{\tan }^2}x)\cos (\tan x) + (1 + {{\cot }^2}x)\sin (\cot x)}}{{3\sqrt {{{[\sin (\tan x) + \cos (\cot x)]}^2}} }}.\)

Ví dụ 5. Tính đạo hàm các hàm số sau:
a. \(f(x) = \left\{ \begin{array}{l}
{x^2} – 3x + 1\:khi\:x > 1\\
2x + 2\:khi\:x \le 1{\rm{ }}
\end{array} \right.\)
b. \(f(x) = \left\{ \begin{array}{l}
{x^2}\cos \frac{1}{{2x}}\:khi\:x \ne 0\\
0\:khi\:x = 0
\end{array} \right.\)

a.
• Với \(x > 1\) \( \Rightarrow f(x) = {x^2} – 3x + 1\) \( \Rightarrow f'(x) = 2x – 3.\)
• Với \(x < 1\) \( \Rightarrow f(x) = 2x + 2\) \( \Rightarrow f'(x) = 2.\)
• Với \(x = 1\), ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} f(x)\) \( = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} – 3x + 1} \right)\) \( = – 1 \ne f(1)\) \( \Rightarrow \) hàm số không liên tục tại \(x = 1\), suy ra hàm số không có đạo hàm tại \(x = 1.\)
Vậy \(f'(x) = \left\{ \begin{array}{l}
2x – 3\:khi\:x > 1\\
2\:khi\:x < 1
\end{array} \right.\)
b.
• Với \(x \ne 0\) \( \Rightarrow f(x) = {x^2}\cos \frac{1}{{2x}}\) \( \Rightarrow f'(x) = 2x\cos \frac{1}{{2x}} – \frac{1}{2}\cos \frac{1}{{2x}}.\)
• Với \(x = 0\), ta có: \(\mathop {\lim }\limits_{x \to 0} \frac{{f(x) – f(0)}}{x}\) \( = \mathop {\lim }\limits_{x \to 0} x\cos \frac{1}{{2x}} = 0\) \( \Rightarrow f'(0) = 0.\)
Vậy \(f'(x) = \left\{ \begin{array}{l}
\left( {2x – \frac{1}{2}} \right)\cos \frac{1}{{2x}}\:khi\:x \ne 0\\
0\:khi\:x = 0
\end{array} \right.\)

Ví dụ 6. Chứng minh rằng các hàm số sau đây có đạo hàm không phụ thuộc \(x.\)
a. \(y = {\sin ^6}x + {\cos ^6}x + 3{\sin ^2}x{\cos ^2}x.\)
b. \(y = {\cos ^2}\left( {\frac{\pi }{3} – x} \right) + {\cos ^2}\left( {\frac{\pi }{3} + x} \right)\) \( + {\cos ^2}\left( {\frac{{2\pi }}{3} – x} \right) + {\cos ^2}\left( {\frac{{2\pi }}{3} + x} \right)\) \( – 2{\sin ^2}x.\)

a. Ta có: \(y = {\sin ^6}x + {\cos ^6}x + 3{\sin ^2}x{\cos ^2}x\) \( = {\left( {{{\sin }^2}x} \right)^3} + {\left( {{{\cos }^2}x} \right)^3}\) \( + 3{\sin ^2}x{\cos ^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\) \( = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3} = 1.\) Suy ra: \( y’ = 0.\)
b. Ta có: \(y = 2 + \frac{1}{2}{\rm{[}}\cos \left( {\frac{{2\pi }}{3} – 2x} \right) + \cos \left( {\frac{{2\pi }}{3} + 2x} \right)\) \( + \cos \left( {\frac{{4\pi }}{3} – 2x} \right) + \cos \left( {\frac{{4\pi }}{3} + 2x} \right)]\) \( – 2{\sin ^2}x\) \( = \frac{3}{2} + \frac{1}{2}( – \cos 2x – \cos 2x) – 2{\sin ^2}x = 1.\) Suy ra: \(y’ = 0.\)

Ví dụ 7. Tìm \(a,b\) để hàm số \(f(x) = \left\{ \begin{array}{l}
{x^2} – x + 1{\rm{ }}\:khi\:x \le 1\\
– {x^2} + ax + b\:khi\:x > 1
\end{array} \right.\) có đạo hàm trên \(R.\)

Với \(x \ne 1\) thì hàm số luôn có đạo hàm.
Do đó hàm số có đạo hàm trên \(R\) khi và chỉ khi hàm số có đạo hàm tại \(x = 1.\)
Ta có: \(\mathop {\lim }\limits_{x \to {1^ – }} f(x) = 1\), \(\mathop {\lim }\limits_{x \to {1^ + }} f(x) = a + b – 1.\)
Hàm số liên tục trên \(R\) \( \Leftrightarrow a + b – 1 = 1\) \( \Leftrightarrow a + b = 2.\)
Khi đó:
\(\mathop {\lim }\limits_{x \to {1^ – }} \frac{{f(x) – f(1)}}{{x – 1}} = 1.\)
\(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{f(x) – f(1)}}{{x – 1}}\) \( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{ – {x^2} + ax + 1 – a}}{{x – 1}}\) \( = a – 2.\)
Nên hàm số có đạo hàm trên \(R\) thì: \(\left\{ \begin{array}{l}
a + b = 2\\
a – 2 = 1
\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}
a = 3\\
b = – 1
\end{array} \right.\)

Ví dụ 8. Tìm \(m\) để các hàm số:
a. \(y = (m – 1){x^3} – 3(m + 2){x^2}\) \( – 6(m + 2)x + 1\) có \(y’ \ge 0\), \(\forall x \in R.\)
b. \(y = \frac{{m{x^3}}}{3} – m{x^2} + (3m – 1)x + 1\) có \(y’ \le 0\), \(\forall x \in R.\)

a. Ta có: \(y’ = 3\left[ {(m – 1){x^2} – 2(m + 2)x – 2(m + 2)} \right].\)
Do đó: \(y’ \ge 0\) \( \Leftrightarrow (m – 1){x^2} – 2(m + 2)x – 2(m + 2) \ge 0\) \((1).\)
• Với \(m = 1\) thì \(\left( 1 \right) \Leftrightarrow – 6x – 6 \ge 0 \Leftrightarrow x \le – 1.\)
• Với \(m \ne 1\) thì \((1)\) đúng với mọi \(x \in R\) \( \Leftrightarrow \left\{ \begin{array}{l}
a = m – 1 > 0\\
\Delta ‘ \le 0
\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}
m > 1\\
(m + 1)(4 – m) \le 0
\end{array} \right.\) \( \Leftrightarrow m \ge 4.\)
Vậy \(m \ge 4.\)
b. Ta có: \(y’ = m{x^2} – 2mx + 3m – 1.\)
Nên \(y’ \le 0\) \( \Leftrightarrow m{x^2} – 2mx + 3m – 1 \le 0\) \((2).\)
• Với \(m = 0\) thì \((2)\) trở thành: \( – 1 \le 0\) (luôn đúng).
• Với \(m \ne 0\) khi đó \((2)\) đúng với mọi \(x \in R\) \( \Leftrightarrow \left\{ \begin{array}{l}
a = m < 0\\
\Delta’ \le 0
\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}
m < 0\\
m(1 – 2m) \le 0
\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}
m < 0\\
1 – 2m \ge 0
\end{array} \right.\) \( \Leftrightarrow m < 0.\)
Vậy \(m \le 0.\)

About the Author

Ngày hôm nay cho tôi buồn một lúc
Sau nhiều năm bươn trải kiếp con người
Cố gượng cười mà lòng có thảnh thơi
Thèm được khóc như cái thời nhỏ dại

Đăng nhận xét

Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
Site is Blocked
Sorry! This site is not available in your country.