Lý thuyết lũy thừa với số mũ hữu tỉ

Lũy thừa với số mũ hữu tỉ - Định nghĩa và tính chất

Bài tập vận dụng!

1. Lũy thừa với số mũ nguyên

a) Định nghĩa:

- Lũy thừa với số mũ nguyên dương \(a \in R:{a^n} = a.a...a\) (n thừa số a).

- Lũy thừa với số mũ nguyên âm: \(a \ne 0:{a^{ - n}} = \dfrac{1}{{{a^n}}};{a^0} = 1\)

- Lũy thừa với số mũ hữu tỉ: \(a > 0:{a^{\dfrac{m}{n}}} = \sqrt[n]{{{a^m}}}\left( {m,n \in Z,n \ge 2} \right)\)

b) Tính chất:

Cho \(a \ne 0,b \ne 0\) và \(m,n\) là các số nguyên, ta có:

1/ \({a^m}.{a^n} = {a^{m + n}}\)

2/ \({a^m}:{a^n} = {a^{m - n}}\)

3/ \({\left( {{a^m}} \right)^n} = {a^{mn}}\)

4/ \({\left( {ab} \right)^n} = {a^n}{b^n}\)

5/ \({\left( {\dfrac{a}{b}} \right)^n} = \dfrac{{{a^n}}}{{{b^n}}}\)

6/ Với \(a > 1\) thì \({a^m} > {a^n} \Leftrightarrow m > n\)

7/ Với \(0 < a < 1\) thì \({a^m} > {a^n} \Leftrightarrow m < n\)

Hệ quả:

1/ Với \(0 < a < b\) và \(m\) nguyên dương thì \({a^m} < {b^m}\).

2/ Với \(0 < a < b\) và \(m\) nguyên âm thì \({a^m} > {b^m}\)

3/ Với \(a < b,n\) là số tự nhiên lẻ thì \({a^n} < {b^n}\)

4/ Với \(a > 0,b > 0,n\) là số nguyên khác \(0\) thì \({a^n} = {b^n} \Leftrightarrow a = b\).

2. Căn bậc n

a) Định nghĩa: Cho số thực \(b\) và số nguyên dương \(n\left( {n \ge 2} \right)\). Số \(a\) được gọi là căn bậc \(n\) của số \(b\) nếu \({a^n} = b\).

Từ định nghĩa suy ra:

- Với \(n\) lẻ và \(b \in R\) có duy nhất một căn bậc \(n\) của \(b\), kí hiệu là \(\sqrt[n]{b}\).

- Với \(n\) chẵn và:    

+ \(b < 0\) thì không tồn tại căn bậc \(n\) của \(b\).

+ \(b = 0\) thì có một căn bậc \(n\) của \(b\) là \(0\).

+ \(b > 0\) thì có hai căn trái dấu là \( \pm \sqrt[n]{b}\)

- Căn bậc \(1\) của số \(a\) chính là \(a\).

- Căn bậc \(n\) của số \(0\) là \(0\).

- Nếu \(n\) lẻ thì \(\sqrt[n]{{{a^n}}} = a\) ; nếu \(n\) chẵn thì \(\sqrt[n]{{{a^n}}} = \left| a \right|\) khi \(n\) chẵn.

b) Tính chất:

Với \(a \ge 0,b \ge 0,m,n\) nguyên dương, ta có:

1/ \(\sqrt[n]{{ab}} = \sqrt[n]{a}\sqrt[n]{b}\)

2/ \(\sqrt[n]{{\dfrac{a}{b}}} = \dfrac{{\sqrt[n]{a}}}{{\sqrt[n]{b}}}\left( {b > 0} \right)\)

3/ \(\sqrt[n]{{{a^p}}} = {\left( {\sqrt[n]{a}} \right)^p}\left( {a > 0} \right)\)

4/ \(\sqrt[m]{{\sqrt[n]{a}}} = \sqrt[{mn}]{a}\)

5/ \(\sqrt[n]{a} = \sqrt[{mn}]{{{a^m}}} (a>0) \)



Nguồn: vungoi

About the author

Nguyễn Minh Phương
"một sáng khi con tỉnh giấc
Mặt Trời chưa mọc đằng đông
cửa nhà chắn hết mưa giông
vỡ tan nằm im ngoài cửa"

Đăng nhận xét